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Abstract. We have constructed an atmospheric inversion framework based on TM5 4DVAR to jointly assimilate measurements

of methane and δ13C of methane in order to estimate source-specific methane emissions. Here we present global emission es-

timates from this framework for the period 1999–2016. We assimilate a newly constructed, multi-agency database of CH4 and

δ13CH4 measurements. We find that traditional CH4-only atmospheric inversions are unlikely to estimate emissions consistent

with atmospheric δ13CH4 data, and assimilating δ13CH4 data is necessary to deriving emissions consistent with both measure-5

ments. Our framework attributes ca. 85% of the post-2007 growth in atmospheric methane to microbial sources, with about

half of that coming from the Tropics between 23.5 °N and 23.5 °S. This contradicts the attribution of the recent growth in the

methane budget of the Global Carbon Project (GCP). We find that the GCP attribution is only consistent with our top-down

estimate in the absence of δ13CH4 data. We find that at global and continental scales, δ13CH4 data can separate microbial

from fossil methane emissions much better than CH4 data alone can, and at smaller scales this ability is limited by the current10

δ13CH4 measurement coverage. Finally, we find that the largest uncertainty in using δ13CH4 data to separate different methane

source types comes from our knowledge of atmospheric chemistry, specifically the distribution of tropospheric chlorine and

the isotopic discrimination of the methane sink.
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1 Introduction

Current atmospheric levels of methane (CH4) are about 2.5 times pre-industrial levels, primarily due to anthropogenic emissions15

(Dlugokencky et al., 2011). The main sources of CH4 to the atmosphere today are known, which are periodically summarized by

the Global Carbon Project (GCP, Saunois et al., 2020). In brief, they include anthropogenic sources from agriculture (ruminants,

manure, and rice), waste management (landfills and waste treatment), fossil fuel production and use (coal, oil, and natural gas),

and biomass burning (including biofuels). The remainder is from natural processes, predominantly tropical and high northern

latitude wetlands, with smaller contributions from termites, wild animals and geologic seeps. In the latest GCP report, however,20

there remains a large disparity of ∼160 Tgyr−1 between the bottom-up budget constructed from inventories and the top-down

budget derived from atmospheric CH4 measurements (Saunois et al., 2020), signifying gaps in our understanding of the CH4

budget.

As shown in Figure 1, CH4 levels have been rising rapidly since 2007 after a period of relatively slow growth in 1999–

2006 (Dlugokencky et al., 2011; Saunois et al., 2020). The mechanisms behind the relative stability of 1999–2006 and growth25

thereafter, however, are not yet fully understood. Possible mechanisms suggested in the literature include an approach to a

steady state in the early 2000s (Dlugokencky et al., 2003) followed by an increase in either agricultural (Schaefer et al., 2016)

or fossil (Worden et al., 2017) emissions, or both (Saunois et al., 2020; Jackson et al., 2020); increase in global (Schwietzke

et al., 2016) or tropical (Nisbet et al., 2016, 2019) microbial emissions; a decrease in methane uptake by upland soils (Ni and

Groffman, 2018); and decadal changes in the atmospheric sinks of methane (Rigby et al., 2017; Turner et al., 2017). It is difficult30

to choose between these competing explanations based on atmospheric CH4 measurements alone. However, measurements of

the 13C:12C ratio of CH4, denoted δ13C−CH4 or δ13CH4 in short, provide some additional information to distinguish between

these hypotheses (Lan et al., 2021).

Different CH4 sources have distinct δ13CH4 signatures over large spatial scales, and different sinks consume 12CH4 and
13CH4 at slightly different rates, imposing different signals on atmospheric δ13CH4 (Miller, 2004). Therefore, atmospheric35

δ13CH4 measurements can help constrain and refine the CH4 budget. In an earlier publication, we described the simulation of

atmospheric CH4 and δ13CH4 using the model TM5 (Krol et al., 2005) and its use for evaluating competing hypotheses about

renewed CH4 growth since 2007 (Lan et al., 2021). In this work, we construct and apply a variational inversion framework based

on TM5 to assimilate CH4 and δ13CH4 measurements and estimate space- and time-varying emissions of CH4 disaggregated by

source type. With this framework, we perform atmospheric inversions from 1997 to 2016 to infer large scale methane emissions40

from different sources, assess the added value of δ13CH4 measurements compared to traditional CH4-only inversions, and

investigate the possible factors behind the post-2007 growth in atmospheric CH4.

Several previous studies have used the information provided by δ13CH4 measurements to infer mechanisms behind the be-

havior of atmospheric methane over the past two decades. However, many of these studies approximated the global atmosphere

as a small number of connected boxes, with homogeneous emissions and chemistry in each box (e.g., Schwietzke et al., 2016;45

Schaefer et al., 2016; Nisbet et al., 2016, 2019; Worden et al., 2017). They were therefore susceptible to biases inherent in

box models (Naus et al., 2019) and were unable to use the information contained in spatial gradients of atmospheric CH4
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and δ13CH4. Moreover, by construction, box models have to simplify the complexity of δ13CH4 source signatures, transport

variability and loss processes, and cannot extract information from spatial gradients in atmospheric measurements. Some stud-

ies have used 3D atmospheric circulation models to estimate CH4 emissions consistent with observed δ13CH4 (e.g., Bousquet50

et al., 2006; Rice et al., 2016). However, they have generally used globally uniform δ13CH4 source signatures, when in reality

signatures of some of the most important sources such as wetlands and fossil fuels have strong latitudinal gradients and spatial

variations. In this study, we confront our best estimate of spatio-temporally varying methane emissions and source signatures

with a newly constructed multi-laboratory dataset of atmospheric CH4 and δ13CH4 measurements in the TM5 4DVAR frame-

work. Our technique is analogous to a recently submitted manuscript by Thanwerdas et al. (2021), and in § 4.1 we discuss the55

similarities and differences between our methods.
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Figure 1. Global average CH4 (blue circles, left axis) and δ13CH4 (red diamonds, right axis) from NOAA marine boundary layer (MBL)

and other background sampling sites. The gray box denotes the period from 1999 to 2006 when the atmospheric CH4 burden was relatively

stable, in contrast to the periods of growth before and after. Regular δ13CH4 measurements started at NOAA background sites in 1998, which

is the first year with an estimate of the global δ13CH4. The selection of marine boundary layer sites and the construction of global averages

is described in detail by Masarie and Tans (1995).
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2 Method

2.1 Formulation of the mass balance equations

The atmospheric mass balance of 12CH4 can be written as

d

dt
12C =

∑

s

12Fs−
∑

l

12kl× 12C× [l]60

=
∑

s

12Fs− 12C
∑

l

Ll (1)

where s denotes three isotopically distinct source categories, namely pyrogenic, fossil and microbial CH4; and l denotes species

contributing to chemical loss, namely Cl, OH and O(1D). While the upland soil sink of methane is included in the sources in

conventional methane modeling, for reasons described in § 2.4 we have modeled it as a fourth loss mechanism. The combination
12kl× [l] can be denoted as an inverse lifetime Ll due to species l. For 13CH4, we can write a corresponding equation,65

d

dt
13C =

∑

s

13Fs− 13C
∑

l

αlLl (2)

where αl = 13kl/
12kl. Using the definition of δ, we can substitute 13C = 12Crstd(δa + 1) and 13F = 12Frstd(δs + 1) and get

12C
d

dt
δa =

∑

s

(δs− δa) 12Fs− 12C(δa + 1)
∑

l

ϵlLl (3)

where ϵl = αl− 1 and rstd = 0.0112372 is a pre-defined standard ratio1 (Craig, 1957). While equations (1) and (3) are mathe-

matically complete descriptions of the 12CH4 and 13CH4 budgets, they are not the most convenient form for constructing a dual70

tracer CH4 and δ13CH4 inversion. This is because it is total CH4 that is measured and not the two isotopologues separately.

We therefore construct an alternate formulation in terms of δ′ = (13CH4/CH4)/rstd− 1, which can be related to the more

traditional δ = (13CH4/
12CH4)/rstd− 1 by

δ′ =
1 + δ

1 + rstd(1 + δ)
− 1 (4)

δ =
1 + δ′

1− rstd(1 + δ′)
− 1 (5)75

In terms of this δ′, the mass balance equations become

d

dt
C =

∑

s

Fs−C
∑

l

Ll + rstdC(δ′a + 1)
∑

l

Ll(1−αl) (6)

d

dt
Cδ′a =

∑

s

δ′sFs−Cδ′a
∑

l

αlLl + C
∑

l

Ll(1−αl)− rstdC(δ′a + 1)
∑

l

Ll(1−αl) (7)

1There is not a single unique value of rstd in literature. Currently, rstd = 0.011180 (Zhang and Li, 1990) is used by most measurement laboratories, while

values of 0.011117 (Malinovsky et al., 2019) and 0.011125 (Fleisher et al., 2021) have also been reported recently. However, the true value of rstd impacts

neither our formulation nor our results, as long as a single value is used consistently.
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where C = 12CH4+13CH4 and Fs = 12Fs+13Fs are total methane moles and fluxes respectively. This reformulation of 13CH4

abundance in terms of total carbon is similar to that by Tans et al. (1993). In eq (6), if we consider the coefficients of any Ll,80

then the second term supplies C ∼ 1800ppb, while the third term supplies rstdC(δ′a +1)(1−αl)∼ 0.086ppb, approximating

rstd = 0.01, δ′a =−0.05 and αl = 0.995. In eq (7), with the same approximations, the coefficients of Ll in the last three terms

are, respectively, 89.5 ppb, 9 ppb and 0.086 ppb. So in both equations, we ignore rstdC(δ′a + 1)
∑

l Ll(1−αl), leading to

d

dt
C ≃

∑

s

Fs−C
∑

l

Ll (8)

d

dt
Cδ′a ≃

∑

s

δ′sFs−Cδ′a
∑

l

αlLl + C
∑

l

Ll(1−αl) (9)85

In this formulation, the two tracers to be simulated are total CH4 (which is measured) and an artificial tracer Cδ′a. All measure-

ments of δ13CH4 are converted to δ′a before assimilation. Note that the tracer Cδ′a does not have any surface flux of its own.

There is “production” at the surface proportional to the the CH4 surface flux, and loss in the atmosphere. The loss reactions of

eq (8) and (9) are coupled, and the loss of the tracers from time t to t + δt is calculated by solving the differential equation to

give90

C(t + δt) = C(t)e−δt
∑

l Ll (10)

Cδ′(t + δt) = [C(t) +Cδ′(t)]e−δt
∑

l αlLl −C(t)e−δt
∑

l Ll (11)

2.2 Inversion framework

We use the TM5 4DVAR inversion framework (Meirink et al., 2008), which has been used to estimate surface fluxes of CO,

CO2 and CH4 (Hooghiemstra et al., 2011; Bergamaschi et al., 2013; Krol et al., 2013; Basu et al., 2013, 2014) in single-tracer95

inversions, as well as source-specific CO2 fluxes in multi-tracer inversions (Basu et al., 2020, 2016; Ma et al., 2021). At the

heart of the framework is the TM5 offline tracer transport model (Krol et al., 2005) and its adjoint, driven by ECMWF ERA

Interim reanalysis winds and run globally at 3◦× 2◦ with 25 vertical layers defined by sigma-pressure hybrid coordinates.

Two tracers are simulated in TM5, total methane or C of eq (8), and the artificial tracer Cδ′a of eq (9). Measurements of CH4

are directly compared to modeled values of C, while measurements of δ13CH4 are first converted to δ′a and then to Cδ′a by100

multiplying with values of CH4 mole fractions measured in the same air samples.

TM5 4DVAR minimizes a cost-function J as a function of surface fluxes x by balancing fits to atmospheric observations y

with deviations from the prior fluxes x0,

J(x) =
1
2
(Hx− y)T R−1(Hx− y) +

1
2
(x−x0)B−1(x−x0) (12)

where H is the transport, chemistry and observation operator connecting surface fluxes with atmospheric measurements, and105

R and B are the error covariances of Hx− y and prior fluxes respectively. Our formulation of R contains both the analytical

measurement uncertainty and a model representativeness error proportional to local tracer gradients (Meirink et al., 2008).

For each source type (pyrogenic, fossil and microbial), the diagonal elements of B per time step and lateral grid cell are

5
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Table 1. Parameters for constructing the prior flux error covariance

Source type f λ (km) τ (months)

Microbial 1.2 500 2

Fossil 1.5 700 6

Pyrogenic 1.0 300 1

proportional to the prior flux, or f×x0. Off-diagonal elements of B are constructed assuming an exponential decay of the prior

error correlation in space and time with source-specific scales λ and τ respectively. The values of f , λ and τ for the different110

source types are given in Table 1. While there is no unique way of specifying these parameters, our choices yield reasonable 1σ

prior uncertainties on global total microbial, fossil and pyrogenic emissions of∼25 Tgyr−1 (∼7%),∼30 Tgyr−1 (∼17%) and

∼2 Tgyr−1 (∼6%) respectively. The 1σ uncertainty on the annual global total CH4 emission comes to ∼40 Tgyr−1 (∼7%)

with these choices. The cost function J of eq (12) is minimized over 50 iterations by a conjugate gradient minimizer utilizing

the Lanczos algorithm (Lanczos, 1950; Courtier et al., 1998).115

In TM5 4DVAR, we calculate J(x) of (12) with TM5 and ∂J/∂x with its adjoint. A traditional variational estimation would

require us to run the forward and adjoint models multiple times over the entire period over which we want to estimate fluxes.

However, these model runs require a significant amount of time, and iterations must be performed in succession. For example,

at our 3◦× 2◦ resolution, TM5 simulates a decade in 8 hours. So to perform an inversion over two decades with 50 iterations

(one iteration is one forward and one adjoint model run), it would take 8× 2× 2× 50 = 1600 hours, or 67 days just for the120

model runs, not counting time spent in the computing queue. This is impractical given the need to do tests required of any

new inversion system. Therefore, we split up our target period into several inversions that were run in parallel as shown in

Figure 2(a). A single forward run from 1984 to 2017 produced initial C and Cδ′a fields for all inversions. This forward run

was identical to scenario “C_WL+” of Lan et al. (2021) and matched the long term atmospheric CH4 and δ13CH4 trends over

that period. Six five-year inversions were run simultaneously with two years of overlap (red bars) between inversions, starting125

in 1997, 2000, 2003, 2006, 2009 and 2012. After all six inversions finished, the fluxes from the middle three-year period of

each inversion (blue bars) were considered for analysis. For simulating prior and posterior mole fractions, fluxes from the

non-overlapping periods (1997 – 2001, 2001 – 2004, 2004 – 2007 ... 2013 – 2017) were stitched together and a single forward

run was done with those fluxes.

2.3 Prior fluxes and δ13CH4 source signatures130

The prior fluxes and their δ13CH4 source signatures for the different categories of methane emissions are described in detail as

“scenario C_WL+” in Lan et al. (2021). Briefly, the prior fluxes are based on bottom-up emission estimates with adjustments

to match global atmospheric CH4 increases and to satisfy the global mass balance of δ13CH4 over 1984–2017. For biomass

burning or pyrogenic emissions, we use the Global Fire Emission Database (GFED) 4.1s for 1997-2016 (van der Werf et al.,

2017) and estimates from the Reanalysis of Tropospheric chemical composition (RETRO) project before 1997 (Schultz et al.,135

6
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Figure 2. A schematic of the time splitting of our inversions. Red bars denote spin up and spin down periods, and blue bars denote periods

from which fluxes were considered in our analysis. Schematic (a) denotes the time splitting used in most of our inversions as described in

§ 2.2, whereas schematic (b) denotes the time splitting used specifically with climatological priors as described in § 3.4. In splitting scheme

(a), each inversion spans five years and the entire time span is covered with six inversions running simultaneously, starting from initial fields

produced by a 1984–2017 model run with prior fluxes. In splitting scheme (b), each inversion spans six years and the entire span is covered

with four inversions. However, except for the 1997–2003 inversion, all other inversions are started from the optimized mole fraction fields at

the end of year 5 of the previous inversion, and therefore the inversions cannot be run in parallel.

2008). Other anthropogenic emissions are based on the EDGAR 4.3.2 inventory (Janssens-Maenhout et al., 2019). We use

natural fossil emissions reported by Etiope et al. (2019). Emission estimates from wild animals and termites are adopted from

Bergamaschi et al. (2007). Wetland emissions and upland soil consumption of methane are estimated by a process-based model

(Zhuang et al., 2004; Liu et al., 2020), after which the soil sink is modeled as a 1st order loss process as explained in § 2.4.

The δ13CH4 source signatures used in our study are mainly spatially resolved maps based on the Global δ13CH4 Source Sig-140

nature Inventory 2020 for coal, oil and gas (ONG), biomass and biofuel burning, ruminant and wild animal sources (Sherwood

et al., 2021; Lan et al., 2021), spatial maps for geological seeps (Etiope et al., 2019) and wetland sources (Ganesan et al., 2018).

Globally averaged values are used for waste, landfills, termites, rice, and other energy and industry, given insufficient data to

develop spatial distributions for their δ13CH4 signatures (Lan et al., 2021).

The sum of the bottom-up methane emission estimates described above is not consistent with top-down estimates of global145

total emissions based on observed atmospheric CH4 growth and estimated loss, which requires a 46 Tgyr−1 increase in the

annual global emission in 2016 compared to the 1999–2006 quasi-stable period. In addition, the δ13CH4 mass balance requires

167 Tgyr−1 emissions from fossil sources (including natural geological seeps) to be consistent with modeled sinks and the

δ13CH4 source signatures described above. Therefore, we (i) scale the ONG emissions from EDGAR 4.3.2 uniformly using

annual scaling factors to reach a total of 167 Tgyr−1 from all fossil sources, (ii) impose a linear trend on wetland emis-150

sions to achieve an increase of 46 Tgyr−1 in total 2016 emissions compared to 1999–2006, and (iii) adjusted emissions from

agricultural and wastes sectors to match the year on year global CH4 growth rate derived from marine boundary layer obser-

vations (Dlugokencky et al., 2011). This ensures that our global CH4 and 13CH4 budgets approximate the long term trends in

atmospheric CH4 and δ13CH4 over 1984–2017.
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Table 2. Fractionation parameters for CH4 loss

Loss reaction C D (K) Reference

Loss to OH 1.0039 0.00 Saueressig et al. (2001)

Loss to Cl 1.0430 6.46 Saueressig et al. (2001)

Loss to O(1D) 1.0130 0.00 Saueressig et al. (2001)

Soil sink 1.0215 0.00 King et al. (1989)

2.4 Methane loss mechanisms and fractionation155

Atmospheric methane has four loss mechanisms, atmospheric oxidation by OH and Cl throughout the atmosphere, destruction

by O(1D) in the stratosphere, and surface uptake by upland soils. In all our inversions, these sinks are prescribed and not

optimized. Monthly climatological CH4 loss rates in the stratosphere due to OH, Cl and O(1D) were constructed from a run

of the ECHAM5/MESSy1 chemistry transport model (Steil et al., 2003; Jöckel et al., 2006). Loss due to tropospheric Cl is

simulated using a recent model-derived estimate of tropospheric Cl (Hossaini et al., 2016). For tropospheric OH, we use the160

monthly OH climatology of Spivakovsky et al. (2000) after scaling by 0.9 to match the declining atmospheric abundance of

methyl chloroform in the early 2000s (Montzka et al., 2011).

In most CH4 inversions, upland soil sinks are folded into the net wetland flux. However, the soil sink fractionates strongly

between 12CH4 and 13CH4 (King et al., 1989), and therefore we keep it separate from wetland fluxes. We model the soil sink

as a first order reaction at the surface, in which the loss rates of 12CH4 and 13CH4 in the lowest model layer are d12C/dt =165

−kssFss
12C and d13C/dt =−αsskssFss

13C respectively. Fss is the prior soil sink map from the TEM land surface model, and

kss is an arbitrary constant tuned to a value such that in a forward run with prior fluxes, the global total soil sink matches the

prior total.

The fractionation between 12C and 13C for each of the loss reactions is modeled as k12/k13 = 1/α = CeD/T (Saueressig

et al., 2001), where T is the air temperature in Kelvin. The soil sink fractionation is cast in a similar form for convenience.170

Coefficients C and D we used are tabulated in Table 2.

2.5 CH4 and δ13CH4 measurements

To maximize the spatiotemporal coverage of in-situ CH4 and δ13CH4 data, we have developed a new database by harmonizing

measurements from NOAA/INSTAAR with those from 30 other laboratories around the world (Lan et al., 2021). All CH4 data

have been quality checked and converted to a common CH4 scale, namely the World Meteorological Organization (WMO)175

X2004A scale maintained at NOAA’s Global Monitoring Laboratory (Dlugokencky et al., 2005). For data not on the WMO

X2004A scale, we applied lab-specific scale multipliers estimated based on (i) comparisons of measurements of common

air samples during the WMO/IAEA Round Robin Comparison Experiment (Crotwell et al., 2020), and (ii) comparisons of

co-located atmospheric measurements made by NOAA and other laboratories. We constructed the uncertainty on the assimi-

8
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lated CH4 measurements from a combination of (i) measurement repeatability of a single sample (hereafter called the single180

measurement precision), (ii) lab-specific long-term reproducibility based on analyzer type and sampling frequency reported in

literature, and (iii) each lab’s realization of the calibration scale. If a scale conversion was needed to bring measurements onto

the WMO X2004A scale, the mole fraction uncertainty due to the scale multiplier uncertainty was added in quadrature. The

final uncertainties are typically less than 9 ppb for all CH4 measurements.

We used δ13CH4 data from the Institute for Arctic and Alpine Research (INSTAAR) as well as other isotope laboratories185

making precise measurements of atmospheric methane with isotope ratio mass spectrometers. The INSTAAR δ13CH4 data

were measured in a subset of air samples collected from NOAA’s Global Greenhouse Gas Reference Network (GGGRN).

Because different labs have independent ties to primary reference materials which do not agree, we calculated offsets to bring

the δ13CH4 data onto the INSTAAR realization of the Vienna Pee Dee Belemnite (VPDB) scale (Miller et al., 2002). These

offsets were based on measurements of cylinders, flasks filled from cylinders, or co-located sample data, and are all described190

in Umezawa et al. (2018). When there was not a direct comparison, e.g., between INSTAAR and TU, or INSTAAR and NIPR,

we used comparisons between each of these labs and the Institute for Marine and Atmospheric research Utrecht (IMAU). Each

comparison had an uncertainty associated with it, which were combined in quadrature to account for uncertainty in the offset

correction. The total uncertainty on assimilated δ13CH4 measurements was typically less than 0.15 ‰. The final database of

assimilated CH4 and δ13CH4 measurements is available at https://doi.org/10.15138/64w0-0g71.195

With the following exceptions, we assimilate all the observations from this database including marine boundary layer

sites, surface and tower sites over continents (Andrews et al., 2014), and vertical profiles from routine aircraft measurements

(Sweeney et al., 2015). Intermittent aircraft profiles such as from the HIPPO (Wofsy, 2011) and ATom (Thompson et al., 2022)

campaigns are not assimilated. CH4 data from flasks taken aboard routine flights between Japan and Australia as part of the

CONTRAIL program have been assimilated (Machida et al., 2008; Matsueda et al., 2015). A subset of the CONTRAIL flasks200

were also analyzed for δ13CH4 (Umezawa et al., 2012), which were not assimilated. For continental tower sites with multi-

ple intake heights, only data from the highest intake are considered in inversions to minimize local influence. For sites with

continuous CH4 analyzers, the CH4 data are averaged hourly and only hourly averages between 11:00 and 16:00 local solar

time are assimilated; these are the times when planetary boundary layer heights are likely to be best-represented by transport

models. For continuous CH4 analyzers on mountain tops, we only assimilate hourly averages between 00:00 to 05:00 local205

solar time to avoid possible up-slope contamination. Site-specific statistical filtering based on a non-parametric curve fitting

routine (Thoning et al., 1989) is further applied, with the exception of vertical profiles, to remove large outliers with potential

local or other contamination. The number of CH4 and δ13CH4 measurements assimilated each year is summarized in Table 3,

and their locations are plotted in Figure 3.

2.6 Uncertainty estimation and sensitivity tests210

The uncertainty of surface emission estimates is a combination of random and systematic uncertainties. Random uncertainties

are associated with those components of the inversion system whose variations are assumed to be zero on average. In the

formulation of the cost function (12), the prior flux x0 is assumed to have a probability density function (PDF) centered on

9
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Table 3. The number of CH4 and δ13CH4 observations assimilated in our inversions, broken down by year.

Year CH4 δ13CH4 Year CH4 δ13CH4 Year CH4 δ13CH4

1997 9075 0 2004 24669 1178 2011 66307 1914

1998 9236 457 2005 36077 742 2012 74957 1842

1999 9981 371 2006 36707 1163 2013 70785 1592

2000 33514 537 2007 44056 1042 2014 81433 2171

2001 16514 256 2008 51138 990 2015 84900 2576

2002 19497 925 2009 53243 1875 2016 81126 2941

2003 20191 1070 2010 66930 1413 2017 57977 2337

1-49 50-99 100-499 500-999 1000-4999 5000-9999 10000-50999

Assimilated CH  measurements

1-19 20-49 50-99 100-199 200-499 500-999 1000-2199

Assimilated ¹³C-CH  measurements

Figure 3. Locations of assimilated CH4 and δ13CH4 measurements. The symbol sizes represent the number of measurements between 1997–

2017 assimilated from each location. Overlapping symbols over some of the locations are due to multiple agencies measuring at those

locations.

the true flux with variance around the truth given by the prior covariance matrix B. Similarly, the model-observation mismatch

Hx− y is assumed to have a PDF centered around the mismatch between the true atmospheric mole fraction and true fluxes215

propagated through an unbiased transport model, with variance around this mean given by R. The random uncertainty in the

optimal estimate is given by B̂, where

B̂−1 =
∂2J

∂x2
= HT R−1H + B−1 (13)

Variational inversion systems such as TM5 4DVAR can construct a low rank approximation of B̂ during the optimization.

However, for large state vectors the B̂ thus constructed is an overestimation of the true posterior uncertainty (Meirink et al.,220

2008; Bousserez et al., 2015). We therefore construct an estimate of B̂ by performing an ensemble of 100 independent inver-

sions for each of the 5-year inversions of Figure 2(a), with prior fluxes and observations perturbed according to the covariances

specified by B and R respectively. With 100 ensemble members, our estimate of B̂ is expected to be within 10 % of the exact
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analytical solution for B̂ (Bousserez et al., 2015). Furthermore, our ensemble of inversions allows us to compute any posterior

covariance and correlation between estimated fluxes, such as between large regions or different CH4 source types.225

Systematic uncertainties are associated with aspects of the inversion system that are assumed fixed and perfectly known

in principle, but might in fact be biased in practice. In our inversion system, such aspects include, but are not limited to,

atmospheric transport and chemistry, isotope source signatures, and the wetland inundation maps used to construct the prior

wetland emissions. Because the posterior covariance estimate does not include systematic errors, we explore the impact of such

errors by performing inversions with different realizations of those potentially biased inputs in the following sensitivity tests.230

2.6.1 Tropospheric chlorine

The magnitude and distribution of the Cl sink in the troposphere is uncertain, with estimates as high as 13 Tgyr−1 to

37 Tgyr−1 based primarily on southern hemisphere background observations (Allan et al., 2007). However, more recent stud-

ies have found a more limited role of tropospheric Cl as a methane oxidant (Gromov et al., 2018). Consequently, most CH4

inverse models neglect tropospheric Cl as a methane oxidant. However, due to the strong isotopic fractionation in the CH4 +Cl235

reaction, Cl plays an important role in determining atmospheric δ13CH4 (Strode et al., 2020; Lan et al., 2021). It is therefore

important to test the sensitivity of our conclusions to the imposed tropospheric Cl sink within the range of realism. The Cl

estimate by Hossaini et al. (2016) we use in this study is on the higher side of the range posited by Gromov et al. (2018). We

perform an inversion with the tropospheric Cl field reported by Wang et al. (2021) as an alternative lower specification. In order

to keep the global CH4 lifetime unchanged between the two scenarios of tropospheric Cl, we scale the tropospheric OH field240

by 0.9 and 0.92 respectively when we use the Cl fields of Hossaini et al. (2016) and Wang et al. (2021). Since the two scenarios

lead to slightly different sink fractionation in the atmosphere, prior ONG and ruminant fluxes are adjusted to match the long

term atmospheric δ13CH4 trend for both cases.

2.6.2 OH fractionation

We use chemical fractionation factors reported by Saueressig et al. (2001) since they provide factors for all atmospheric sink245

processes from a consistent set of laboratory measurements. While these are the most recent and generally accepted, for CH4

oxidation by OH another set of coefficients C = 1.0054,D = 0 have previously been reported by Cantrell et al. (1990). To the

best of our knowledge, this earlier result has not been refuted in the literature, nor is there any independent evidence supporting

one set of coefficients over another. Instead, the most recent evaluation of atmospheric reaction rates (Burkholder et al., 2019)

recommends using the Saueressig et al. (2001) rates with increased uncertainty in the OH fractionation to include Cantrell et al.250

(1990) as a possibility. Since the sink fractionation plays a significant role in determining atmospheric δ13CH4, we perform

an additional inversion with the OH fractionation of Cantrell et al. (1990) to gauge its impact. Since the two OH fractionation

factors lead to different sink fractionation in the atmosphere, prior ONG and ruminant fluxes are adjusted to match the long

term atmospheric δ13CH4 trend for both cases.
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2.6.3 δ13CH4 source signatures255

In principle, it is possible to estimate both CH4 fluxes and δ13CH4 source signatures in a dual tracer inversion (Thanwerdas

et al., 2021). However, this makes the problem non-linear and the inversion convergence slow. It is also difficult to construct

a prior covariance for δ13CH4 source signatures since much of the uncertainty stems from extrapolating a limited number

of δ13CH4 signature measurements to the entire domain of CH4 sources, resulting in errors that are systematic and non-

Gaussian. Therefore, we explore the impact of δ13CH4 signature uncertainty on our results by running inversions with alternate260

specifications of δ13CH4 signature maps as follows.

Source signature maps for biomass burning were calculated by multiplying C3 and C4 signatures of −26.7 ‰ and −12.5 ‰

respectively (Cerling et al., 1998) with the C3/C4 fraction for each 1°× 1° latitude/longitude grid cell (Lan et al., 2021). For

ruminants and wild animals, C3 and C4 signatures were taken to be −54.5 ‰ and −67.8 ‰ respectively from the Global

δ13CH4 Source Signature Inventory 2020 (Sherwood et al., 2021; Lan et al., 2021). In this way, the C3/C4 vegetation distri-265

bution determines the source signatures of both biomass burning and ruminant emissions. Our default inversion averages the

C3/C4 distributions of Still et al. (2003) and its modified version as used by Randerson et al. (2012). To explore the uncertainty

from the assumed C3/C4 map, we perform two additional inversions with δ13CH4 source signature maps derived separately

from the two individual C3/C4 distributions. In addition, country-level ruminant emission signatures were compiled by Chang

et al. (2019), including their temporal changes due to shifting ruminant diet and due to the downward trend in atmospheric270

δ13CO2 that is photosynthesized by the vegetation. We use the ruminant CH4 source signatures of Chang et al. (2019) in a

third inversion. The three instances of source signatures related to the C3/C4 distribution described here were significantly

different, requiring us to adjust the prior flux apportionment to meet our goal of matching long-term CH4 and δ13CH4 trends.

Specifically, we changed the prior fossil CH4 emissions from the default of 167 Tgyr−1 to 158 Tgyr−1 for the inversions

using δ13CH4 signatures derived from Still et al. (2003) and Chang et al. (2019). For the inversion using δ13CH4 signatures275

derived from Randerson et al. (2012), we adjusted the prior fossil emission to 175 Tgyr−1. In all cases, this was achieved by

globally scaling the ONG and ruminant emissions to achieve long-term CH4 and 13CH4 mass balance.

For the global maps of ONG and coal emission signatures, our default inversion assumes time-invariant maps over the

study period. However, considering the rapid development of the US shale gas production and a shift in production from

conventional to shale gas in the past decades, we estimate that the mean US ONG signature (production-weighted mean of280

shale and conventional gas) increased by 2.7 ‰ from 2006 to 2016 (Lan et al., 2021). We incorporate this in an alternate

specification of fossil CH4 source signatures and perform an inversion with this new map.

Finally, our default inversion setup uses the latitude-based source signature specification of Ganesan et al. (2018) for wet-

land emissions. Over the past several years we have implemented carbon isotopes in the TEM land surface model (Zhuang

et al., 2004), making it possible to derive process-based δ13CH4 wetland source signatures consistent with wetland emissions285

(IsoTEM, Oh et al., 2021). We perform an inversion with wetland source signatures from the IsoTEM model as an alternative

to our default wetland source signatures.
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2.6.4 Wetland inundation extent

Wetland inundation extent is a leading driver of uncertainty in bottom-up estimates of wetland CH4 emissions, and therefore in

the global CH4 budget. We explore this uncertainty by performing inversions with prior wetland CH4 fluxes derived from the290

TEM model (Zhuang et al., 2004) driven by two different inundation maps. Our default setup uses a time-varying or dynamic

inundation map based on the satellite-based Surface WAter Microwave Product Series (SWAMPS, Schroeder et al., 2015)

combined with the Global Lakes and Wetlands Dataset (GLWD, Lehner and Döll, 2004; Poulter et al., 2017). In addition, we

also drive the TEM model with the static inundation map of Matthews and Fung (1987), in which case meteorology is the only

source of seasonal and inter-annual variation of prior wetland emissions. These two inundation maps produce significantly295

different atmospheric CH4 and δ13CH4 gradients (scenarios “C_WL+” and “Q_static_WL” of Lan et al., 2021) in a forward

run, and therefore serve as a robust test of our inversion results with different inundation extents.

2.6.5 Initial δ13CH4 gradients

Large scale gradients of atmospheric δ13CH4 take significantly longer to respond to changes in emissions compared to gradients

of CH4 (Tans, 1997), requiring multi-decade spin-ups for models trying to simulate atmospheric δ13CH4 (Lan et al., 2021).300

Inverse models, on the other hand, take significantly less time to be spun-up since fluxes during the spin-up period are modified

to fit observed atmospheric δ13CH4. The exact spin-up duration required depends on the accuracy of the initial modeled δ13CH4

gradients and the inversion setup. To test if a one year spin-up for our inversions as depicted in Figure 2(a) is sufficient,

we perform two additional inversions with different starting δ13CH4 large-scale gradients. Specifically, of the flux scenarios

simulated by Lan et al. (2021), we choose scenarios “H_mean_sig” and “Q_static_WL”, which produced the flattest and305

steepest north-south gradients in δ13CH4 respectively (see Lan et al., 2021, Figure 5). We perform inversions starting from

CH4 and δ13CH4 fields provided by forward simulations of those scenarios at each of the starting points in Figure 2(a). The

resultant spread in fluxes provides an estimate of the sensitivity of our setup to erroneous initial δ13CH4 gradients.

3 Results

3.1 Fit to atmospheric CH4 and CH4 + δ13CH4 data310

Both the CH4-only and the CH4 + δ13CH4 inversions fit the atmospheric CH4 data, while only the latter is consistent with

atmospheric δ13CH4 data. This is demonstrated both at surface sites from which data were assimilated, as well as data from

aircraft campaigns that were withheld for validation. Figure 4 shows that both inversions fit the observed CH4 time series at

three NOAA baseline observatories. However, despite starting from realistic atmospheric CH4 and δ13CH4 fields, the CH4-only

inversion moves progressively farther from observed δ13CH4 with time at those same locations, demonstrated in Figure 5. Only315

the CH4+δ13CH4 inversion fits both atmospheric CH4 and δ13CH4 data. This is also demonstrated in Figure 6, which compares

modeled δ13CH4 to δ13CH4 measured by the HIPPO and ATom aircraft campaigns, and from regular flights between Japan and

Oceania as part of the CONTRAIL program. ATom and HIPPO campaigns sampled primarily background air over the oceans
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Figure 4. Observed (grey circles) and posterior modeled (colored symbols) CH4 time series at three NOAA baseline observatories. Both

inversions with and without δ13CH4 data fit the CH4 data equally well.
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Figure 5. Observed (grey circles) and posterior modeled (colored symbols) δ13CH4 time series at three NOAA baseline observatories. The

inversion with δ13CH4 data fit the observations throughout the inversion period, but the inversion without δ13CH4 data – a traditional CH4

inversion – drifts away from the observations with time. Note that both inversions were started with the same CH4 and δ13CH4 fields in 1997,

but by the time δ13CH4 data were available in mid-1998 they had already drifted apart, leading to the apparent initial offset in the plots above.
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Figure 6. Modeled minus observed δ13CH4 as a function of latitude and altitude from the ATom (top), HIPPO (middle) and CONTRAIL

(bottom) aircraft campaigns. Mismatches are shown for the prior flux, the CH4-only inversion, and the dual tracer CH4 + δ13CH4 inversion.

Altitudes have been binned in 1 km bins, while latitudes have been binned either in 10° (ATom, HIPPO) or 5° (CONTRAIL) bins. The

rightmost panels show the number of samples averaged per bin.
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at multiple latitudes and altitudes, and neither CH4 nor δ13CH4 data from those campaigns were assimilated. CONTRAIL

primarily sampled the marine background at multiple altitudes as well, except for a small number of samples taken during320

takeoff and touchdown in Japan. CH4 flask samples from CONTRAIL were assimilated in both inversions, but their δ13CH4

measurements were not assimilated. The CH4-only inversion compares far less favorably to the δ13CH4 measurements than the

joint inversion. Therefore, it is reasonable to conclude that our CH4-only inversion, and very likely most traditional CH4-only

inversions, do not yield a CH4 emission distribution consistent with atmospheric δ13CH4 observations. We therefore expect our

CH4 + δ13CH4 inversion to provide more accurate emission estimates and source partitioning than our CH4-only inversion.325

3.2 Large scale fluxes from CH4 and CH4 + δ13CH4 inversions
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Figure 7. Total and source-specific annual emissions of CH4 globally and from three latitudinal bands. “Tropics” in this context refers to

the region between 23.5 °N and 23.5 °S, while the northern and southern extra-tropics are to the north and south respectively. The shaded

regions denote 2σ prior and posterior error bars.
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Table 4. Annual averages of CH4 emissions between 1999–2016 and their 2σ uncertainties shown in Figure 7, in Tgyr−1. The “CH4 only”

and “CH4+δ13CH4” inversions of Figure 7 have been abbreviated to “CH4” and “Joint” respectively below. Note that (a) the 2σ uncertainties

tabulated are the averages of the uncertainties across 18 years, not the uncertainties on the 18 year average emissions, and (b) an uncertainty

of zero below is due to rounding, and not because the uncertainty is exactly zero.

Source type Total Microbial Fossil Pyrogenic

Inversion Prior CH4 Joint Prior CH4 Joint Prior CH4 Joint Prior CH4 Joint

Globe 577± 79 576± 4 576± 4 383± 52 407± 13 374± 13 167± 59 141± 13 173± 13 28± 3 28± 3 30± 3

Northern Extra-Tropics 318± 68 273± 10 274± 10 188± 39 164± 14 168± 14 120± 55 99± 13 96± 13 10± 2 10± 2 10± 2

Tropics 221± 31 271± 11 269± 11 163± 27 216± 13 184± 13 41± 15 38± 10 66± 10 17± 3 16± 2 19± 2

Southern Extra-Tropics 38± 12 32± 4 32± 4 32± 11 27± 5 22± 5 6± 4 4± 3 10± 3 1± 0 1± 0 1± 0

The top row of Figure 7 shows the global total annual emissions from two inversions, a CH4-only or “traditional” methane

inversion without δ13CH4 data, and a joint CH4 + δ13CH4 inversion developed in this work. The shaded regions in Figure 7

denote 2σ random errors derived from 100-member Monte Carlo ensembles of inversions described in § 2.6. Annual averages

of the emissions and random errors are summarized in Table 4. The global total emission from all categories is unaffected330

by the addition of δ13CH4 data, since δ13CH4 does not place any additional constraint on the total CH4 emission. However,

the partitioning between microbial and fossil sources is changed significantly with the addition of δ13CH4 data. Based on

comparison to atmospheric data as noted in § 3.1, we expect the source partitioning from our CH4 + δ13CH4 inversion to be

more accurate compared to our traditional CH4-only inversion.

Figure 7 also shows the total and source-disaggregated CH4 emissions from our CH4 and CH4+δ13CH4 inversions over three335

latitude bands, where the Tropics are bounded between 23.5 °S and 23.5 °N. Relative to the prior, tropical (extra-tropical) total

emissions are adjusted upward (downward) by both inversions, and there is little sensitivity of the tropical versus extra-tropical

partitioning on the assimilation of δ13CH4 data. In the northern extra-tropics, the partitioning of CH4 emissions between the

different source types does not change significantly with the addition of δ13CH4 data. However, in the Tropics the inversion

with δ13CH4 data shows significantly higher fossil (and lower microbial) emissions than the inversion without δ13CH4 data.340

Fossil CH4 emissions in the southern extra-tropics are significantly different for most years in the presence of δ13CH4 data, but

similarly significant differences do not exist for the other source types. Finally, our estimate of pyrogenic emissions does not

change significantly in Figure 7 in the presence and absence of δ13CH4.

3.3 Systematic errors in emission estimates

As explained in § 2.6, we estimate possible biases in our flux estimates by running the inversion with different choices of345

non-optimized input. The spread in annual emissions due to alternate specifications of atmospheric chemistry (tropospheric

chlorine of § 2.6.1 and OH fractionation of § 2.6.2) is shown in Figure 8. Analogous spreads due to different specifications

of δ13CH4 source signatures (§ 2.6.3), wetland inundation maps (§ 2.6.4) and initial atmospheric δ13CH4 fields (§ 2.6.5) are

shown in Figure 9. Note that the Y-axis ranges in Figures 8 and 9 are different. The average spread in annual emissions from
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different latitude bands and source types are summarized in Table 5 for each sensitivity test. The average of the annual posterior350

uncertainties as depicted in Figure 7 are also provided in Table 5 as “MC-derived (2σ)” for reference, with the caveat that 2σ

uncertainties are not directly comparable to the range across a few inversions.
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Figure 8. Total and source-specific annual emissions of CH4 globally and from three latitudinal bands as in Figure 7. The shaded regions

denote the spread (max to min) of annual emissions from sensitivity tests described in § 2.6.1 and § 2.6.2.

Most of the sensitivity tests have little impact on the global total CH4 emission, and the spread in the total CH4 emission

from different latitude bands is generally smaller than the posterior uncertainty of our base inversion. However, by far the

largest source of error in partitioning the total emission into fossil and microbial sources comes from our representation of355

atmospheric chemistry, namely the distribution of tropospheric chlorine and the kinetic isotope effect of CH4 destruction by

OH. Unless the uncertainty in these two factors can be reduced, our ability to use δ13CH4 measurements to partition different

source types will be seriously hampered. The uncertainty arising from our limited knowledge of δ13CH4 source signatures, to

the extent represented by the different signature maps used, is lower than the uncertainty due to atmospheric chemistry. Lastly,

the uncertainty due to an incorrect specification of the initial atmospheric δ13CH4 field is minimal, in line with our expectation360

that an inversion will rapidly correct for it by adjusting emissions during its spin-up period. However, we note here that the
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Figure 9. Total and source-specific annual emissions of CH4 globally and from three latitudinal bands as in Figure 7. The shaded regions

denote the spread (max to min) of annual emissions from sensitivity tests described in § 2.6.3, § 2.6.4 and § 2.6.5.

“incorrect” initial fields we constructed for the last test still satisfied the global δ13CH4 mass balance by construction. The

sensitivity to an incorrect initial condition will likely be higher if the initial field does not satisfy global δ13CH4 mass balance.

3.4 Attribution of the post-2007 methane growth

As discussed earlier (Figure 1 and discussion in § 1), the atmospheric methane burden has been steadily growing since 2007365

after a period of quasi-stability during 1999–2006. We use our CH4 + δ13CH4 inversion to ask whether the addition of δ13CH4

data can provide information on the sources of the additional methane. Figure 7 suggests that the trend in CH4 emissions

comes largely from microbial emissions in a CH4 + δ13CH4 inversion. However, it is possible that this attribution to microbial

emissions comes from our prior – which had a trend in the microbial emissions and a temporally flat fossil contribution –

instead of the atmospheric data. To assess the robustness of our inferred microbial and fossil emission trends, we perform a370

second set of inversions with the following modifications:
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Table 5. Average annual Monte Carlo-derived random uncertainty and possible bias in CH4 emissions, separated by source type (Tot = total,

Mic = microbial, Fos = fossil, Pyr = pyrogenic) and latitude bands as in Figure 7. For each source type and region, the mechanism behind

the largest possible bias has been demarcated by highlighting the bias in red. The “MC-derived” numbers are 2σ posterior uncertainties, all

other numbers represent the range between maximum and minimum estimates. All numbers are in Tg CH4 per year.

Region Globe N. Extra-Tropics Tropics S. Extra-Tropics

Source type Tot Mic Fos Pyr Tot Mic Fos Pyr Tot Mic Fos Pyr Tot Mic Fos Pyr

MC-derived (2σ) 3.8 13.1 13.5 2.9 9.5 13.7 12.9 1.5 10.7 12.9 10.4 2.3 4.3 5.0 2.9 0.2

Tropospheric chlorine 0.6 26.3 25.9 0.2 4.8 20.1 15.1 0.2 3.4 7.3 10.6 0.2 1.6 1.4 0.3 0.0

OH fractionation 1.5 42.1 41.4 0.8 1.7 10.5 11.9 0.1 3.0 29.2 26.1 0.6 1.3 2.5 3.4 0.0

Source signatures 1.1 16.3 16.2 1.0 1.8 8.8 8.2 0.2 4.1 16.3 12.3 1.2 3.5 2.1 2.6 0.0

Wetland inundation 1.0 9.3 10.1 1.3 3.5 8.9 10.6 0.6 3.7 4.6 2.3 1.1 2.5 2.1 0.7 0.0

Initial δ13CH4 0.1 0.5 0.4 0.0 0.1 0.4 0.4 0.0 0.1 0.4 0.4 0.0 0.1 0.2 0.1 0.0

1. We construct climatological prior fluxes and source signatures by averaging our prior emissions and signatures from

2000 to 2006. Neither the resulting priors nor the source signatures have any time trend.

2. Since the methane budget from climatological priors is no longer in balance with the atmospheric growth, we cannot

use the overlapping inversions of Figure 2(a) to run multiple periods in parallel. Instead, we run four 6-year inversions375

in sequence, spanning 1997–2003, 2002–2008, 2007–2013 and 2012–2018, following the scheme shown in Figure 2(b).

The first inversion used the same initial field in 1997 as our default inversion. Every successive inversion used the

previous inversion’s fifth year mole fraction field as initial condition. The last year of each inversion is discarded in the

end, and the first five years’ fluxes are stitched together and analyzed.

The posterior uncertainties of the emissions derived from this modified setup are calculated by performing a Monte-Carlo380

suite of 100 inversion as described in § 2.6. The Monte-Carlo runs follow the geometry of Figure 2(b) as well, with the ith

inversion (i = 1 to 100) of each period initialized from the 5th year mole fraction field of the ith inversion of the previous period.

This allows us to calculate not only annual uncertainties but also uncertainties on long term averages.

To study the transition around 2007, we considered two periods 2000–2006 and 2008–2014. Average total and source-

specific emissions over the two periods are shown in Figure 10, as well as the change in the average emissions between385

the two periods. The prior fluxes do not change between the two periods, therefore the estimated change must be driven by

the atmospheric observations. Both the CH4-only and the CH4 + δ13CH4 inversions estimate a change in the total emission of

(27.1±0.6) Tgyr−1 to match the increase in the atmospheric burden. However, while the CH4-only inversion attributes∼70 %

of that to fossil CH4 emissions and only ∼29 % to microbial emissions, the addition of δ13CH4 data switches the balance to

∼15 % fossil and ∼85 % microbial. This change in the allocation of the methane emission in the presence of δ13CH4 data is390

significant compared to the uncertainties on the changes as depicted in Figure 10. The contribution of pyrogenic emissions to

20

https://doi.org/10.5194/acp-2022-317
Preprint. Discussion started: 5 July 2022
c© Author(s) 2022. CC BY 4.0 License.



the change is small in both inversions, and its change between the two inversions is not significant compared to its uncertainty.

This is consistent with the downward trend in the global average δ13CH4 in Figure 1, since microbial sources are the lightest

of the three source types.
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Figure 10. Change in global CH4 emissions between the periods 2000–2006 and 2008–2014, total (top left) and disaggregated by source

type. The gray bars denote prior emissions, and the colored bars denote two inversions, one with and the other without assimilated δ13CH4

data. For each source type, the first two columns show the average emission over the two periods in question, and the third column shows

the change between the two periods. The 1σ error bars are derived from a 100-member Monte Carlo ensemble of inversions following the

configuration of Figure 2(b).

Geographically, the change between the two periods is driven almost equally by the Tropics and the northern extra-Tropics395

(Figure 11). In the Tropics, the addition of δ13CH4 data results in higher microbial emissions in both periods. The change

between the two periods is also attributed to microbial emissions, unlike a CH4-only inversion which attributes the change

primarily to fossil methane. In the northern extra-Tropics, although the presence of δ13CH4 data point to increase in microbial

emissions between the two periods, the relative apportionment of the increase between fossil and microbial emissions does

not differ significantly from the CH4-only emission if we consider the respective uncertainty estimates. This suggests that the400

global increase in microbial emissions between the two periods (Figure 10) is driven largely by the Tropics.

It is worth noting here that a change in emission strengths is not the only possible mechanism for an increase in atmospheric

CH4; a reduction in the sink strength could also induce a positive trend in atmospheric CH4 post-2007. However, Lan et al.

(2021) have shown that the changes in sinks proposed so far in the literature to explain the post-2007 CH4 growth are not

consistent with the observed δ13CH4 trend post-2007. We therefore do not consider those alternatives here.405

3.5 Separating microbial and fossil emissions

The CH4 observations assimilated in a CH4-only inversion constrain the total CH4 emission, and any source disaggregation

relies on spatiotemporal separation of emissions as encoded in the prior emissions and their uncertainties. Since the two largest

CH4 source types, microbial and fossil, have different δ13CH4 source signatures, assimilating δ13CH4 observations should
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Figure 11. Similar to Figure 10, but disaggregated into latitude bands. As in Figure 7, “Tropics” refers to the region between 23.5 °S and

23.5 °N. Pyrogenic emissions have not been plotted because of their small contribution in all three latitude bands.
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Figure 12. Posterior correlation between global annual microbial and fossil CH4 emissions for the two inversions of Figure 7.

provide additional information to separate the two sources compared to a CH4-only inversion. We can evaluate this addi-410

tional information by looking at the posterior correlation between microbial and fossil emissions, both globally and regionally.

Posterior correlations between global annual microbial and fossil CH4 emissions, calculated from our 100-member ensemble

of independent inversions as described in § 2.6, are shown in Figure 12. Error bars on the correlations shown in Figure 12

represent the 95th percentile range of 20,000 evaluations of the correlation by randomly sampling the 100-member inversion

ensemble with replacement (Efron and Tibshirani, 1994).415
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Figure 13. Posterior correlation between annual microbial and fossil CH4 emissions over the Northern Extra-Tropics (left) and Asia (right)

for the two inversions of Figure 7.

For all the years shown in Figure 12, a CH4-only inversion results in a strong negative correlation between microbial and

fossil emissions, consistent with the idea that atmospheric CH4 measurements constrain the total CH4 budget much better

than individual source types. The addition of δ13CH4 data reduces this negative correlation, implying that δ13CH4 provides

additional information to disentangle different CH4 source types. The degree of disentanglement, represented by the reduction

in the negative correlation, is determined by the δ13CH4 measurement coverage in a particular year and atmospheric transport420

connecting the emissions to those measurements. The correlation reduction is limited in our inversions by the relative sparsity

of δ13CH4 measurements; even in the most recent 2012–2017 inversion period, only 2.8 % of CH4 measurements have corre-

sponding δ13CH4 measurements, overwhelmingly in locations far removed from significant CH4 emissions (Figure 3). Having

more δ13CH4 measurements in general, and specifically closer to emissive regions, should allow further disentangling of the

different CH4 source types.425

Over smaller regions, only the Northern Extra-Tropics and Asia show significant decorrelation between annual fossil and

microbial emissions (Figure 13) with the addition of δ13CH4 data. While several other regions show similar reductions, the re-

ductions are typically not significant compared to the 95th percentile error bars. The significant decorrelation seen for Northern

Extra-Tropical and Asian emissions may be because most δ13CH4 measurements are in the Northern Extra-Tropics and down-

wind of Asia in the Pacific. To see similar significant decorrelation over other regions we will likely need increased δ13CH4430

coverage closer to those regions. Although Figure 3 shows some δ13CH4 measurements over North America and Europe, the

majority of those measurements are from the background air sampling sites Niwot Ridge and Jungfraujoch respectively, and

therefore do not contribute to significant decorrelation of fossil and microbial emissions from those continents.

3.6 Comparison to the GCP methane budget

The Global Carbon Project (GCP) periodically publishes top-down and bottom-up budgets of methane emissions from a suite435

of models. However, a meaningful comparison between our emissions and the 2020 GCP budget (Saunois et al., 2020) is
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not straightforward. The GCP bottom-up (BU) budget for 2008–2017, with 737 Tgyr−1 emissions and 625 Tgyr−1 sinks,

significantly overestimates the atmospheric growth rate. This is primarily due to an overestimate of both microbial (159 Tgyr−1

freshwater sources) and fossil (45 Tgyr−1 geologic sources) methane in the GCP budget, making a direct comparison with our

microbial and fossil estimates meaningless. The GCP top-down (TD) estimates do not provide a fossil-microbial split of “other440

natural” emissions, also making a direct comparison with our estimates difficult. However, it is possible to calculate emissions

for certain GCP categories from our inversions for some limited comparisons.

Assuming that methane from geological seeps do not change significantly over decadal time scales, we subtract 35 Tgyr−1

geologic methane from our fossil methane emissions to estimate (137± 2) Tgyr−1 fossil fuel emissions for both the 2000–

2009 and 2008–2016 periods, with a change of (0± 2) Tgyr−1 between the two periods. This is in stark contrast with GCP445

BU estimates of 111 Tgyr−1 and 127 Tgyr−1 for the two periods respectively. The GCP TD fossil fuel estimates for the two

periods are 99 Tgyr−1 and 109 Tgyr−1 respectively, lower than both our estimates and the GCP BU estimates. While our

baseline estimates for the two periods may be influenced by systematic biases (§ 2.6), the change between the two periods is

relatively robust. With the alternate specification of tropospheric chlorine (Wang et al., 2021) and alternate fractionation due to

the OH oxidation (Cantrell et al., 1990), the two biggest sources of bias in source apportionment by δ13CH4, the change in our450

fossil fuel emission estimate between the two periods is 1 Tgyr−1 and −1.7 Tgyr−1 respectively, well within our uncertainty

estimate of 2 Tgyr−1 and significantly lower than both the GCP BU and the GCP TD estimates. The GCP BU (TD) estimate

of an increase of 16 Tgyr−1 (10 Tgyr−1) between the two periods is closer to our estimate of (8.4± 5.6) Tgyr−1 from a

CH4-only inversion, but not when δ13CH4 data are incorporated.

For reasons mentioned above, we cannot directly compare our microbial emission estimates to GCP emission estimates.455

However, if we assume that methane from termites, wild animals and oceans do not change over decadal time scales, we can

compare the change in the GCP TD estimate of wetlands, agriculture and waste from 2000–2009 to 2008–2016 with the change

of microbial emissions in our inversion estimates. The GCP TD budget estimates a change of 12.6 Tgyr−1 between those two

periods, compared to our estimate of (26± 2) Tgyr−1 from a joint δ13CH4 and CH4 inversion and of (18± 6) Tgyr−1 from a

CH4-only inversion. Thus, the change in microbial emissions in the GCP TD budget is at the lower end of but consistent with460

our estimate from a CH4-only emission, while it is not consistent with our budget after incorporating δ13CH4 data. We cannot

perform a similar analysis with the GCP BU budget because freshwater emissions cannot be assumed to be static over decadal

time scales.

Finally, our pyrogenic emission estimates for both 2000–2009 and 2008–2016 periods are (30.0± 0.6) Tgyr−1, with a

change of (0.3± 0.5) Tgyr−1. These are close to the GCP BU (TD) estimates of 31 Tgyr−1 and 30 Tgyr−1 (29 Tgyr−1 and465

31 Tgyr−1) respectively. Neither the GCP budgets nor our inversion show significant changes in pyrogenic methane emissions

between the two periods.
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4 Discussion

We have constructed a variational atmospheric inversion system capable of assimilating CH4 and δ13CH4 measurements to

estimate source-specific methane emissions within the TM5 4DVAR framework. We have assimilated CH4 and δ13CH4 mea-470

surements from a multi-agency air sampling network in this framework to estimate fossil, microbial and pyrogenic emissions of

atmospheric CH4 globally. We have derived Bayesian uncertainty estimates on our emissions (random error), as well as investi-

gated the impact of biases from non-optimized aspects of our inversion (systematic error). Our conclusions can be summarized

as follows.

First, Figures 5 and 6 show that our inversion assimilating only CH4 does not yield a CH4 emission distribution consistent475

with atmospheric δ13CH4. This is very likely true of CH4 inversions in general, since they have no constraints forcing them

to match atmospheric δ13CH4 gradients and trends. Starting from a prior emission distribution consistent with atmospheric

δ13CH4 trends does not ensure that the posterior emission estimates will remain consistent. Our CH4-only inversion started

from a prior that reproduced the global mean atmospheric δ13CH4 trend (scenario “C_WL+” of Lan et al., 2021), yet the

posterior deviated from it as shown in Figures 5 and 6. We conclude that the only way to guarantee a posterior emission480

distribution consistent with both atmospheric CH4 and δ13CH4 data is to assimilate them simultaneously.

Second, given an atmospheric sink scenario, our current observational coverage allows us to estimate the global total CH4

emission with a 2σ random uncertainty of ∼3.8 Tgyr−1, which is less than 1 % of the total emission. Microbial, fossil and

pyrogenic emission uncertainties are around 3.5 %, 8 % and 10 % respectively at the global scale. Given these posterior uncer-

tainties, there are significant differences between inversions with and without δ13CH4 data in the apportionment of the total485

CH4 emission between microbial and fossil sources, both globally and in the Tropics (Figure 7 and Table 4). In both regions, the

inclusion of δ13CH4 data in an inversion results in a significantly higher proportion of fossil emissions compared to microbial

emissions, which we consider realistic since it matches both atmospheric CH4 and δ13CH4 data (Figures 4 and 5). Pyrogenic

emissions are relatively insensitive to the inclusion of δ13CH4 data.

Third, we tested the sensitivity of our results to several factors that can lead to biases or systematic errors, as detailed in490

§ 2.6. This included different maps of the δ13CH4 isotopic source signatures, static and dynamic maps of the wetland inundation

extent, different initial δ13CH4 fields, different fractionation factors for the CH4+OH oxidation mechanism, and different fields

of tropospheric Cl. The last two factors had by far the largest impacts on the large scale apportionment between microbial and

fossil emissions, even though their impact on the total CH4 budget was nil or negligible. With the OH fractionation of Cantrell

et al. (1990), the global microbial emission increases to 414 Tgyr−1 and the fossil emission drops to 131 Tgyr−1. With the495

lower estimate of tropospheric Cl from Wang et al. (2021), the global microbial emission decreases to 345 Tgyr−1 while

the fossil emission increases to 199 Tgyr−1. Since some CH4 inversions in the literature do not simulate a tropospheric Cl

sink of CH4, we tested the impact of this limiting case as well. In the absence of a tropospheric Cl sink, the global microbial

emission drops further to 331 Tgyr−1 and the fossil emission increases to 213 Tgyr−1. Most of these shifts in the global

partitioning are accompanied by shifts in the latitudinal partitioning. All of these are significant revisions to the partitioning500

of Table 4, suggesting that the ability of atmospheric δ13CH4 measurements to partition the total CH4 emission into different

25

https://doi.org/10.5194/acp-2022-317
Preprint. Discussion started: 5 July 2022
c© Author(s) 2022. CC BY 4.0 License.



source types, at least over large regions, is limited by our knowledge of these two critical chemical processes. The uncertainty

in our knowledge of δ13CH4 source signatures, long considered a limitation on the use of δ13CH4 data, is almost never a leading

driver of uncertainty in Table 5, although it is usually more significant than either inundation extent or the initial δ13CH4 field.

Finally, our tests suggest that the impact of an incorrect initial δ13CH4 field can be ameliorated by a relatively short spin-up of505

one year in an inversion, in contrast to a multi-decadal spin-up necessary for a forward model run.

Fourth, atmospheric δ13CH4 data strongly suggest that the rise in microbial emissions is the primary driver of the post-2007

growth in atmospheric CH4. While a CH4-only inversion starting from priors without a time trend attributes ∼70 % of the

growth to fossil emissions, the addition of δ13CH4 data shifts that to microbial emissions being responsible for ∼85 % of the

growth. Since the latter inversion is consistent with atmospheric δ13CH4 data while the former is not (Figure 5), we consider a510

majority microbial contribution to the post-2007 growth to be more realistic. A disaggregation of the growth by latitude bands

suggests that a significant majority of the increase in tropical methane emissions is due to microbial and not fossil emissions.

Moreover, although some of the sensitivity tests of § 2.6 lead to different partitioning between microbial and fossil emissions,

they all suggest a steeper trend in microbial compared to fossil emissions in Figures 8 and 9.

Fifth, the ability of δ13CH4 data to disentangle different CH4 source types can be quantified by the reduction in the posterior515

correlation between emissions from those sources owing to the addition of δ13CH4 data, compared to a CH4-only inversion.

Considering the two largest source types of methane, microbial and fossil, we see significant reductions in their posterior

correlation over the globe as well as the northern extra-tropics and Asia. The degree of decorrelation, however, is limited, and

we do not see significant decorrelation over other regions. We hypothesize that this is not a limitation of our understanding

of δ13CH4 but rather of its limited observational coverage. Even in the most recent years less than 3 % of assimilated CH4520

measurements were accompanied by δ13CH4 measurements, almost exclusively from background sites. It is very likely that

an increase in the observational coverage of δ13CH4, preferably close to source regions, will improve the capability of δ13CH4

measurements to distinguish between different CH4 source types.

Sixth, while it is difficult to compare our emission budget directly with GCP due to different partitioning schemes, we note

that our fossil fuel emissions for both the 2000–2009 and 2008–2016 periods are higher than the GCP top-down and bottom-525

up emissions. However, our estimate of the change in fossil fuel emissions between the two periods is significantly lower

than the GCP estimates. Concurrently, our estimate of the change in microbial emissions over the same time is significantly

higher than the GCP top-down estimate. Both of these discrepancies are driven by atmospheric δ13CH4 data, since our CH4-

only inversion provides changes that are consistent with GCP estimates. We therefore conclude that the microbial and fossil

emission change estimates in the GCP budget are consistent with atmospheric CH4 data but not with δ13CH4 data. Finally, our530

pyrogenic emission estimates are consistent with or close to the GCP estimates for both periods.

4.1 Comparison with Thanwerdas et al. (2021)

Thanwerdas et al. (2021) describe an alternative variational inversion framework using the LMDz-SACS model to assimilate

CH4 and δ13CH4 measurements. We find it heartening that others have decided to tackle this complicated problem. Since they

reserve decadal dual tracer inversions for future work, we will compare their technique with ours to highlight the similarities535
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and differences. The biggest difference lies in the decision of Thanwerdas et al. (2021) to optimize δ13CH4 source signatures,

compared to our choice of keeping them fixed for a specific inversion. While δ13CH4 source signatures are uncertain for

many methane sources, we explain our reasons for not optimizing them in § 2.6.3. Instead, we explore the impact of source

signature uncertainty with different constructions of the source signature map as detailed in § 2.6.3. In the end, at least for large

geographical regions, the uncertainty from source signatures did not prove to be a leading uncertainty (Table 5). The second540

major difference between the two inversion frameworks lies in the construction of the prior CH4 fluxes. While Thanwerdas

et al. (2021) use a prior that approximately matches the atmospheric CH4 growth rate, we construct our priors to match both

the CH4 growth rate and the δ13CH4 trend over two decades. We suspect this, and the linearity of our formulation due to not

optimizing source signatures, to be the reasons why our inversion required a shorter spin-up time compared to Thanwerdas

et al. (2021).545

There are also a few differences in implementation between the two frameworks. Most notably, Thanwerdas et al. (2021)

estimate the posterior uncertainty as the spread between different inversion configurations, correctly stating that an evaluation

of the posterior covariance matrix would require significantly more computing resources. We evaluate that posterior covariance

matrix for both CH4+δ13CH4 and CH4-only inversions and present both types of uncertainty, namely the systematic uncertainty

as the spread between multiple inversion configurations, and the random (Bayesian) uncertainty as the spread of an ensemble of550

100 independent inversions. The configurations we explore for the systematic uncertainty are also different from Thanwerdas

et al. (2021), and include alternate specifications of the Cl oxidant and the isotopic discrimination of the CH4 + OH reaction.

We find the latter two to be the most significant drivers of uncertainty for partitioning CH4 emissions using δ13CH4 data.

While our implementation of the inversion is different from Thanwerdas et al. (2021), our goals are very similar. We look

forward to long-term inversions of CH4 and δ13CH4 data using LMDz-SACS so that we may compare and contrast with our555

results presented here, and figure out how best to use isotopic measurements to solve the atmospheric methane puzzle.

4.2 Future work and outlook

While we feel confident in the CH4 emission estimates reported here, there are several areas which we plan to explore and

improve in future work.

4.2.1 Alternate OH560

The atmospheric CH4 budget is determined by the balance between its sources and sinks, the latter primarily driven by the

OH radical. While there have been some efforts to optimize atmospheric OH in concert with CH4 emissions (e.g., Zhang

et al., 2018, 2021; Yin et al., 2021), we do not think in situ CH4 samples provide sufficient information to constrain the sink

independently. Moreover, estimates of OH abundance and variability over the past decades, either from CH4 inversions (Yin

et al., 2021) or otherwise (Bousquet et al., 2005; Montzka et al., 2011; Nicely et al., 2018), are consistent with a limited role of565

OH variability in recent trends in atmospheric CH4. This is why, similar to the vast majority of CH4 inversions, we have chosen

to keep the OH sink fixed to a field consistent with observed trends and gradients of methyl chloroform (MCF, Spivakovsky

et al., 2000; Patra et al., 2014, 2020). Nonetheless, we acknowledge that our knowledge of atmospheric OH is imperfect and

27

https://doi.org/10.5194/acp-2022-317
Preprint. Discussion started: 5 July 2022
c© Author(s) 2022. CC BY 4.0 License.



uncertain, and in future work we plan to explore alternate specifications of OH that are consistent with our knowledge of

atmospheric chemistry and MCF trends and gradients.570

4.2.2 Alternate optimizer and source signature uncertainty

Errors in the specification of the δ13CH4 source signatures can have significant impact on the inferred methane emissions

(Thanwerdas et al., 2021). While we have explored alternate specifications, it is possible that the true uncertainty in δ13CH4

source signatures is larger than the range we have explored. Optimizing the δ13CH4 source signatures with a realistic prior

covariance structure may yield larger but more realistic error bounds on source-specific methane emissions. We plan to explore575

that option in the future, which will require an alternate to the conjugate gradient optimizer (Lanczos, 1950) we currently

use. We have tested the M1QN3 optimizer used by Thanwerdas et al. (2021), and have found its convergence to be slow and

inefficient for our system. Therefore, we plan to explore and implement alternate optimizers that can work efficiently on non-

linear problems, in order to have the option of estimating δ13CH4 source signatures. Concurrently, we will work on a more

complete characterization of the δ13CH4 source signature uncertainty, which will be required in order to derive a prior error580

covariance matrix for δ13CH4.

4.2.3 OSSEs

We have tested the ability of existing δ13CH4 observations to infer mechanisms behind the recent CH4 growth and separate

different CH4 source types, and found that the ability to distinguish fossil from microbial emissions – as reflected by the pos-

terior correlation between them – is limited at policy-relevant scales (§ 3.5). We strongly suspect that this is a limitation of the585

existing δ13CH4 observational coverage and not of the inversion technique. If we consider expanding the δ13CH4 measurement

network to improve that ability in the future, we need to quantify the added value of different expansion strategies. We plan

to do this with Observation System Simulation Experiments (OSSEs) simulating different observational networks, as we have

done for 14C of CO2 in the past (Basu et al., 2016).

4.2.4 Satellite CH4 retrievals590

Several satellites have been launched by various space agencies in the past decades to estimate atmospheric CH4 from space,

and several more are slated to go up over the next decade. As the technique to use δ13CH4 in CH4 inversions matures, we hope

to eventually add satellite CH4 data to such inversions to provide stronger regional constraints.

Code availability. TM5 4DVAR code for performing the inversions is publicly available at https://sourceforge.net/p/tm5/cy3_4dvar/ci/

default/tree/.595

Data availability. The CH4 and δ13CH4 data assimilated for this exercise can be downloaded from https://doi.org/10.15138/64w0-0g71.
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